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Clinton’s Equal Central Angle Conjecture 
 
 
JOSEPH D. CLINTON, PolyModular, Ltd. 
 
 
BACKGROUND 
In 1937 Michael Goldberg introduced �a class of multi-symmetric polyhedra� consisting of 
twelve pentagons, eight quadrilaterals or four triangles and all additional faces being 
hexagons. Thus he introduced the fact �trihedral polyhedra which posses the same number of 
hexagonal faces in addition to 12 (8, or 4) regularly and symmetrically disposed pentagons 
(quadrilaterals, or triangles) can be topologically different.”  Ref 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Goldberg�s polyhedra 
 
Buckminster Fuller recognized the same patterns of hexagons 
being clustered around the twelve pentagons of his 
icosahedron based geodesic forms, as can be seen in his 1965 
�Geodesic Structures� patent US 3,197,927. Ref 2 He took 
advantage of this characteristic to provide circular openings 
inside the pentagons and hexagons while retaining the 
triangular structuring between. The cylindrical holes 
provided additional stiffness and the elements between the 
holes would nest easily for packing and shipping during 
disassembly. Fuller applied his concept to structures he 
referred to as the �Fly�s Eye� structures. Ref 3 
 
 

Figure 2. Buckminster Fuller�s geodesic structure 
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After Harold Kroto and Richard Smalley published their discovery 
of the Carbon molecule C60 in 1985, Ref 4, P.W. Fowler suggested 
that �icosahedral carbon clusters with pentagonal and hexagonal 
faces are Goldberg polyhedra. They have 20(b2 + bc + c2) atoms, 
where b and c are non-negative integers, and obey an electron-
counting rule similar to the famous Hückel (4n + 2) prescription. 
When b � c is divisible by 3 the cluster has a multiple of 60 atoms 
and is closed-shell.� He also suggested �a tetrahedral structure�is 
the best candidate for C120.� Ref 5 
 

Figure 3. Fowler�s C120 
 
Another application of the Goldberg polyhedra came from the work of John P Snyder when 
he published �an equal-area map projection for polyhedral globes� in 1992. Ref 6  
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4. Snyder�s EMAP grid 
 
As a further advancement of the Snyder EMAP grid a class of spatial data structures called 
Geodesic discrete global grid systems (Geodesic DGGS) has been studied.  Ref 7, 8 One such 
grid, the Icosahedral Snyder Equal Area grid (ISEA), subdivides the face of an icosahedron 
into hexagons and uses the Snyder equal area projection to transform the hexagon grid to the 
sphere. The resulting Goldberg polyhedron consists of 12 pentagons with clusters of hexagons 
covering the remaining area of the sphere. The coarseness of the hexagonal grid determines 
the number of overlapping Goldberg polyhedra.   
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Geodesic DGGS-ISEA Ref 9 
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In the late 1960�s under a NASA research project thirteen geometrical methods of describing 
a three-way grid for tessellating the surface of a sphere after Fuller�s methods were studied. 
Ref 10 Many others have been studied and reported in the literature since.  

Figure 6. Spherical three way grid 
 
If select vertices are removed from such grids the Goldberg polyhedra emerges. The 
topologies of these many geometrical solutions remain the same within each group. 
 

Figure 7. Seven geometries of a Goldberg icosahedral polyhedron 
 
GOLDBERG’S POLYHEDRA’S TOPOLOGY 
�Topologically, the arrangement of the hexagons in a triangular patch is the same as in a 30º 
sector of a regular honeycomb arrangement of hexagons�Using a, b as the inclined 
coordinates (60º between axes) of the vertex of a patch, the square of the distance from the 
center of the patch to the vertex is equal to a2 + ab + b2�the total number of faces bounding 

the �polyhedron’ is 10(a2 + ab +b2)+2;� for the icosahedral 
system, 4(a2 + ab +b2)+2 for the octahedral system, and 2(a2 
+ ab +b2)+2 for the tetrahedral system. Ref 1 
 
It can be shown that for the each Goldberg polyhedron system 
the number of: 
Vertices = 2(F - 2) and Edges = 3(F - 2) 
Where: F = the number of faces for the polyhedron sought. 
 

Figure 8. Goldberg�s polyhedra where a = 1 and b = 2 

1, 2 

Class I Class I 

Class III Class III 
Class II 
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The topological groups have been separated into three classes: Ref 10, 11, 12. 
 
Class I  �Subscript a is an integer and b is always zero or b is an integer and a is 
always zero. The lines of the triangular segmentation on the polyhedron face run parallel to 
the edges.� 
 
Class II  �Subscript b is an integer and is equal to a. The lines of the triangular 
segmentation on the polyhedron face run perpendicular to the edges.� 
 
Class III �Subscript a and b can be any pair of integers as long as a ≠  b and a or b ≠ 
zero. The lines of the triangular segmentation on the polyhedron face run oblique to the 
edges.� 

 

Figure 9. Goldberg polyhedra classes 
 
THE CONJECTURE 
A sphere may be tessellated in such a manner that it will be made up of a group of spherical 
polygons, with edges having equal central angles and having the topological characteristics of 
the Goldberg polyhedra.  
 
THE GEOMETRY 
A mathematical solution has not been found to prove the conjecture, however, enough 
Goldberg polyhedra having equal edge central angles have been found to convince this author 
that it has validity. 
 
Twenty seven spherical tessellations of the Goldberg type have been found; nine each based 
on the icosahedron, octahedron and the tetrahedron. In each group 5 are of the Class I type, 3 
are of the Class II type and, 1 the Class III type. 
 
Tables 1 - 3 give their properties, and Figures 10 - 12 illustrate one face of the icosahedron, 
octahedron, or tetrahedron as a tessellated unit that would be repeated to develop the entire 
sphere. It should be pointed out that for the Class III types, an enantiomorphic of the one 
illustrated does exist for each one, but, are not shown here. One should also note that 
symmetry advantages of the Schwarz, Ref 13, triangle within each regular spherical triangular  

Class II Class II 

Class I 
Class III Class III 
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face can be used to an advantage when generating the forms. Each form in the figures will be 
identified by its base polyhedron, I, O, or T with a subscript a, b. 
 

Table 1. Icosahedral System
Where: F=10(a2+ab+b2)+2, V = 2(F - 2), E = 3(F - 2) and r = 1

a b Faces Vertices Edges Edge arc length Central angle 
1 0 12 20 30 0.7297 41.8103
1 1 32 60 90 0.4063 23.2815
2 0 42 80 120 0.3509 20.1025
2 1 72 140 210 0.2648 15.1704
3 0 92 180 270 0.2335 13.3763
2 2 122 240 360 0.2019 11.5688
4 0 162 320 480 0.1750 10.0277
5 0 252 500 750 0.1400 8.0237
3 3 272 540 810 0.1347 7.7201

Table 2. Octahedral System
Where: F=4(a2+ab+b2)+2, V = 2(F - 2), E = 3(F - 2) and r = 1

a b Faces Vertices Edges Edge arc length Central angle 
1 0 6 8 12 1.2310 70.5288
1 1 14 24 36 0.6435 36.8699
2 0 18 32 48 0.5564 31.8807
2 1 30 56 84 0.4248 24.3417
3 0 38 72 108 0.3767 21.5813
2 2 50 96 144 0.3291 18.8588
4 0 66 128 192 0.2833 16.2336
5 0 102 200 300 0.2269 13.0014
3 3 110 216 324 0.2185 12.5176

Table 3. Tetrahedral System
Where: F=2(a2+ab+b2)+2, V = 2(F - 2), E = 3(F - 2) and r = 1

a b Faces Vertices Edges Edge arc length Central angle 
1 0 4 4 6 1.9106 109.4712
1 1 8 12 18 0.8810 50.4788
2 0 10 16 24 0.7778 44.5639
2 1 16 28 42 0.6369 36.4905
3 0 20 36 54 0.5698 32.6499
2 2 26 48 72 0.4959 28.4110
4 0 34 64 96 0.4287 24.5645
5 0 52 100 150 0.3410 19.5359
3 3 56 108 162 0.3291 18.8551  
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 I 1, 0 I 1, 1 I 2, 0 

    

  

 

 

 

 

 

 

 

 
  
 I 2, 1 I 3, 0 I 2, 2 

   

 

 

 

 

   

 

 

 

 

 
 I 4, 0 I 5, 0 I 3, 3 

 
Figure 10. Icosahedral Goldberg equal central angle spherical tessellations  

 

 

 

 

 

 

 

 

 

   

 
 O 1, 0 O 1, 1 O 2, 0 
    
Figure 11. Octahedral Goldberg equal central angle spherical tessellations 
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 O 2, 1 O 3, 0 O 2, 2 
    
 
 
 
 
 
 
 
 
 
 O 4, 0 O 5, 0 O 3, 3 
 
Figure 11, continued. Octahedral Goldberg equal central angle spherical tessellations 
 
 
 
 
 
    

 

 

 

 
   
 T 1, 0 T 1, 1 T 2, 0 

 

 

 

 

 

 

 

 

 

 

 T 2, 1 T 3, 0 T 2, 2 

  

  
Figure 12. Tetrahedral Goldberg equal central angle spherical tessellations 
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 T 4, 0 T 5, 0 T 3, 3 
 
Figure 12, continued. Tetrahedral Goldberg equal central angle spherical tessellations 
    
ADDATIONAL RESEARCH 
Hopefully one will find a mathematical solution to the problem of tessellating a sphere in such 
a manner that it will be made up of a group of spherical polygons, with edges having equal 
central angles and having the topological characteristics of the Goldberg polyhedra. In 
addition to this problem it may also be useful to study other spherical tessellated forms with 
edges having equal central angles. The diamond tessellations on the surface of a sphere appear 
to have similar characteristics. Ref 14 The Fullerenes described by Fowler Ref 15 using the 
spiral conjecture may also be a subject for investigation. 
 
Since first proposing the conjecture stated herein in a paper to the 5th International Conference 
on Space Structures, held at the University of Surrey, Guildford, UK on 19-21 August 2002, it 
has come to my attention that Dick Fischbeck Ref 16 has been working on similar problem. 
He randomly arranges cones of consistent diameter on the surface of a sphere based on the 
spherical excess angle of a polyhedron. He has also proposed a variation where the central 
angles of the cones may consistently generate random tetrahedral pyramids that will tessellate 
the sphere. Perhaps a careful study of his RanDomes will provide a solution to the Goldberg 
polyhedra equal central angle problem.  
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